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Executive Summary 

NCDOT has several Connected and Autonomous Vehicle (CAV)-related projects ongoing throughout the 

state including vehicle testing, connected infrastructure and multiple research projects sponsored at 

universities. Safety has been a critical concern for all of these projects, and one key gap identified in the 

literature was the change to two-way communication that often occurs in traditional pedestrian-vehicle 

interaction. Traditional pedestrian-vehicle communication of intent relies on vehicle/pedestrian dynamics, 

signaling and non-verbal communication with drivers (typically eye contact). 

This project brings together an interdisciplinary team including the Transportation Human Factors group 

members at ITRE and NCSU Psychology, the EcoPRT Autonomous Vehicle team from NCSU and the 

TECHLAV Center from NCAT. The overall goal of the project was to examine how pedestrians and CAVs 

can effectively communicate their intent where these modes conflict. This project focused on three key 

aspects to this issue. First, a prototype autonomous shuttle system was expanded to include additional 

communication features in a lightbar as well as more advanced pedestrian detection systems. Secondly, 

multiple detection methods were trained and tested using traditional datasets as well as a new dataset 

including occluded pedestrians. Finally, a survey was conducted to determine how well pedestrians 

understand specific static or dynamic lightbar patterns as an additional communication tool for CAVs. 

This project tested multiple pedestrian detection methods and developed improved methods with increased 

accuracy and reduced latency. The EcoPRT vehicle was able to incorporate the improved detection method, 

however the training image set included multiple camera perspectives and the method could likely be 

applied to infrastructure-based detection systems. Additionally, the project developed a body part-based 

method which detects head, arms and legs of pedestrians in order to improve the overall detection of 

pedestrians when they are partially occluded. This issue is less severe in infrastructure-based detection 

systems with elevated cameras that avoid most obstructions, but is very important in CAV pedestrian 

detection. The project also developed a database of occluded pedestrian images which can be used for 

training or testing other new methods addressing this issue. Finally, the project examined multiple methods 

for signaling the CAV intent to pedestrians using fixed or moving lightbars. Respondents struggled to 

correctly identify the message communicated by the lightbar in cases where multiple movements are 

expected (such as locations with potential turning movements) but identification improved in more 

constrained environments.  
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 Introduction  

NCDOT has several CAV-related projects ongoing throughout the state including vehicle testing, 

connected infrastructure and multiple research projects sponsored at universities. Safety has been a 

critical concern for all of these projects, and one key gap identified in the literature was the change to 

two-way communication that often occurs in traditional pedestrian-vehicle interaction. Traditional 

pedestrian-vehicle communication of intent relies on vehicle/pedestrian dynamics, signaling and non-

verbal communication with drivers (typically eye contact). 

This project focused on three key aspects to this issue. First, a prototype autonomous shuttle system was 

expanded to include additional communication features in a lightbar as well as more advanced pedestrian 

detection systems. Secondly, multiple detection methods were trained and tested using traditional datasets 

as well as a new dataset including occluded pedestrians. Finally, a survey was conducted to determine 

how well pedestrians understand specific static or dynamic lightbar patterns as an additional 

communication tool for CAVs. 

This report presents a literature review on these areas in Chapter 2, then summarizes the EcoPRT vehicle 

development in Chapter 3. Chapter 4 discusses the challenges and solutions for pedestrian detection, 

followed by the AV-Pedestrian communication study in Chapter 5. Finally, Chapter 6 summarizes the 

findings, potential application areas and future research. 
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 Literature Review  

2.1. Autonomous Vehicle Types and Development Progress 

As autonomous vehicles continue to progress and evolve, it is important to note that autonomous vehicles 

can take on differing flavors and offer different capabilities and usages. Traditionally, autonomous vehicles 

have conceptualized as typical passenger car platforms that have autonomous technology integrated on 

them. These vehicles are restricted to typical uses on highways and other roadways. Recently, there have 

been additional advances that point out other solutions. A small variant is the driverless shuttle that holds 

10 to 12 people still operating on roadways but going along a fixed path to move people in more urban 

situations. Vehicles such as EZ Mile and Optimus Ride are two examples that fit this form factor. SB 739 

also highlights that there is ongoing development of delivery vehicles much smaller not intended to move 

passengers but instead to deliver cargo and goods. Cities as well are planning for a multifaceted deployment 

of autonomous vehicles for their transit solutions. With Singapore planning for completely autonomous 

transit by 2030, Ongel points out the upfront costs for driverless shuttles compared to buses but their TCO 

is much less (Ongel, 2019). The current development of EcoPRT falls in line with this evolving landscape. 

Operating much like a driverless shuttle, it initially follows a fixed route. It’s weight and width may fall 

within the large size of vehicles SB 739 guidelines, however, and the farther-reaching goal is to look at 

autonomous transit vehicle solutions that can not only operate on existing roadways but also operate on 

smaller pedestrian or bicycle paths. Others have recognized the advantage of these smaller vehicles to 

interact in a mixed mode setting. Woodman examines the human factors element of such small vehicles 

platooning in these mixed mode settings (Woodman, 2019). The vehicles they use are being developed by 

RDM Group which currently has a contract to build and deploy 40 of these small autonomous vehicles 

within a city in UK (RDM). 

Furthermore, the lightweight, small format of the vehicle allows one to explore the use of elevated guideway 

to move these vehicles around, and given the size and weight, the associated cost of the elevated guideway 

could be a substantial cost savings when compared to separated infrastructure of other transit solutions. In 

this project, with the continued development of these 5 autonomous vehicles, this provides a platform for 

multi-vehicle autonomous testing that can really examine a number of facets yet to be explored including 

vehicle interactions, passenger throughput, and some farther-reaching research endeavors such as 

information sharing for safety and alerts. Critical to the underlying goal of autonomous vehicle research, 

access to the underlying detection and control provides unique insight not available to DOTs when 

contracting or leasing privately developed autonomous vehicles. The benefits of AV research are not limited 

to situations where public research is further developed than private technology, as private firms developing 

autonomous vehicle platforms are highly protective of algorithms and provide no open access to vehicle 

data. Open data and algorithms allow for transparent policy or regulatory decision making and has been a 

highly successful approach for connected vehicle technologies where USDOT and ITS JPO are able to 

independently verify data, cybersecurity and protection of personal information and develop informed 

standards. 
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2.2. Pedestrian Interaction with AVs 

Despite the fast growing body of literature (for a review, see Rasouli & Tsotsos, 2019), and the 

implementation of LED stripe light in commercialized models of some highly automated vehicles (e.g., 

Mercedes-Benz F015, S500), it remains unclear how to effectively communicate the vehicle's intent to the 

pedestrian. There remain large differences among the implementations. For example, the Mercedes-Benz 

models use LED stripes to indicate the sensed direction of a pedestrian walking in front of the vehicle to 

show that the vehicle knows the existence of the pedestrian. Some car models (e.g., Mitsubishi electric, 

2015) use LED lights to indicate their intended direction of travel. Others use LED lights to instruct 

pedestrians to perform certain actions (e.g., Matthews et al., 2017, “Cross Now”).  

This lack of standardization in vehicle pedestrian communication could cause confusion of pedestrians 

and impair road safety. For example, rightward flowing arrows could be interpreted as the vehicle will 

turn right (if communicating the vehicle’s intended move) or the pedestrian can move to the right of the 

vehicle (if communicating an instruction). As the context is very important in the interpretation of abstract 

and ambiguous symbols/signals, it is possible that pedestrians’ interpretation could be influenced by the 

vehicle’s motion, road layout, and other contextual or situational information (e.g., pedestrians’ 

understanding/experience, other road users’ action), which is valuable to understand. Although there is an 

increasing awareness in the field to understand pedestrian interaction with autonomous vehicles in various 

contexts and under a range of traffic situations (Kaβ, et al., 2020), very little research has been done about 

these contextual effects. In addition, it is also important to consider how policy within a community, city, 

or state can shape LED communication standards to enhance the safety of pedestrians.  

Another important aspect of vehicle pedestrian communication which has been relatively overlooked in the 

literature is the attentional state of a pedestrian. A large proportion of pedestrians walk in areas such as a 

campus (or population dense residential areas) while being distracted both visually and auditorily. This 

brings challenge to the effectiveness of communication and begs the question of whether communicating 

specific intention/instruction could be useful or it is simply more effective to alert pedestrians whenever 

the vehicle changes its path or speed.  

2.3. Pedestrian Detection 

The Decision-making process in an AV is ideally a multi-modal sensing mechanism that receives and fuses 

information from multiple sensors to perceive the environment and react accordingly (Rasouli & Tsotsos, 

2019). Practically, however, we are limited by computation resources; accuracy, range, and update rate of 

sensors; high-computation and imperfect performance of object classification techniques which are still at 

their infancy. Therefore, existing detection mechanisms in AVs primarily rely on radar or Lidar sensors 

which can reliably detect an obstacle but cannot reliably classify whether it is a pedestrian or not (Flores et 

al, 2019). Challenges specific to pedestrian detection include varying appearance of pedestrians (in different 

cloths, color, size) and their dynamic shape, as well as the sensitivity of cameras to environmental noises 

(weather, shadow, illumination) (Gerónimo et al., 2010). In addition, EcoPRT is supposed to be driven in 

population-dense environments such as downtown or university campuses, which are considered dynamic 

cluttered environments, exposing specific challenges regarding pedestrian detection, amongst them 

occlusion is one of the most challenging problems (Zhang et al., 2018).  
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In recent years, numerous approaches for detecting and tracking pedestrians in sequential images have 

grown steadily. With the recent advancement in deep learning, we can utilize machine learning models to 

accurately detect and classify pedestrians in complex scenarios. In this section, we will begin with a brief 

overview of learning-based pedestrian detection, then some existing fusion techniques for combining 

multimodal sensor data, and finally a brief overview of pedestrian tracking. 

 

 Learning-based Pedestrian Detection 

Pedestrian detection from RGB images is an important yet difficult task. Recent works focus on improving 

the robustness and accuracy using deep neural networks. (Tian et al., 2015; Zhao et al., 2016; Zhang et al., 

2018; Zadobrischi and Negru, 2020; Zhang, Yange and Schiele, 2018) Though these methods exhibit 

satisfactory performance in well-lit environments, they struggle to detect pedestrians in low light conditions 

such as nighttime, dawn, sunrises, and sunsets. This is because it is hard to generate shape information from 

images in ill-lit environments. 

On the other hand, the LiDAR can provide comparatively better shape features under these scenarios. 

LiDAR-based feature extraction for pedestrian detection is studied in early research (Premebida, Ludwig 

and Nunes, 2009). As LiDAR can provide the only geometric feature of pedestrians, inferring context-

aware relations of pedestrians’ body parts is one way to distinguish among multiple pedestrians in a 

complex scenario (Oliveira and Nunes, 2010). While using the LiDAR sensor data —the distance, intensity, 

and width of the received pulse signal in each scanning direction, pedestrians can be classified using a 

clustering algorithm (Ogawa et al., 2011). To improve the classification performances of pedestrians, hand-

crafted features such as slice feature and distribution of reflection intensities are explored (Kidono et al., 

2011). The slice provides human body information based on body height and width ratio. Some works are 

focused on the density enhancement method for improving the sparse point cloud of LiDAR and they 

provide an improved shape feature for long-distance pedestrian detection (Li et al., 2015; Lin et al., 2019). 

Pioneering work on the conversion of a 3D point cloud of LiDAR into the 2D plane extracts both hand-

crafted features and learned features, and then trains a support vector machine (SVM) classifier to detect 

pedestrians (Chen et al., 2020). Later, 3D point clouds are converted into 2D panoramic depth maps and 

these depth maps are used in pedestrian detection (Premebida, Ludwig and Nunes, 2009). Even though the 

LiDAR provides better results in the nighttime while it is difficult to get shape features using the camera or 

compare to a distorted image frame, camera-based methods perform better for long- distance pedestrians in 

the daytime where they appear in small sizes. The best result can be achieved by fusing both of these sensors 

to jointly predict pedestrians. 

 Pedestrian Detection by Fusing Sensors 

Since using the LiDAR or the camera independently un- veils their own limitations, it becomes an 

interesting research direction to fuse different sensor modalities. In this setting, the improvement can be 

achieved from the use of multiple views of the pedestrian by learning a strong classifier that accommodates 

both different 3D points of view and multiple flexible articulations. In order to integrate multiple sensor 

modalities, several fusion mechanisms are investigated (Premebida, Ludwig and Nunes, 2009; Premebida 

and Nunes, 2013; Premebida et al., 2014; Gonzalez et al., 2015; Schlosser, Chow and Kira, 2016; Matti, 

Ekenel and Thiran, 2017; Kim et al., 2018). These sensor fusion techniques mostly focus on either 
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combining feature information from different sensors or generating candidate regions from one sensor and 

map these candidate regions to other sensor information. For instance, a deformable part detector is trained 

using optical images and depth images generated from 3D point clouds using upsampling technique 

(Premebida et al., 2014). Some fusion techniques cluster the LiDAR point cloud to generate candidate 

regions and map these regions on an image frame for detecting pedestrians (Matti, Ekenel and Thiran, 2017; 

Lahmyed and Ansari, 2016). Most of these methods sacrifice runtime performance while improving 

detection accuracy. Therefore, a balanced fusion mechanism is needed to deal with the trade-off between 

accuracy and speed. 

 Pedestrian Tracking 

Recent pedestrian trackers are designed mostly based on end-to-end deep learning networks. A common 

approach is adding recurrent layers with the detector module. For example, the ROLO (Ning et al., 2017) 

is the combination of the convolutional layers of YOLO and the recurrent unit of LSTM. TrackR-CNN 

(Voigtlaender et al., 2019) is considered as a baseline method of multi-object tracking that adds instance 

segmentation along with multi-object tracking. Tractor++ is an efficient multiple object tracking that 

utilizes the bounding box regression on predicting the position of an object in the next frame where there 

is no train or optimization on tracking data (Bergmann, Meinhardt and Leal-Taixe, 2019). Besides, a single 

object tracking along with semi-supervised video object segmentation based on siamese neural network is 

introduced in (Wang et al., 2019). On the other hand, the machine learning pipeline-based methods such as 

the Deep SORT which integrates appearance information along with Simple Online and Realtime Tracking 

(SORT) technique, adopts a single hypothesis tracking methodology with the recursive Kalman filter and 

the frame-by-frame data association. This technique focuses on an offline pre-training stage where the 

model learns a deep association metric on a large- scale person re-identification dataset (Wojke, Bewley 

and Paulus, 2017). A single-stage efficient multi-object tracking is introduced in (Wang et al., 2019), where 

target detection and appearance are embedding to be learned in a shared way, and a Kalman filter is used 

for predicting the locations of previously detected objects in the current frame. While considering the 

LiDAR data for pedestrian tracking, a stochastic optimization method is introduced in (Granstrom et al., 

2017) that merges the clustering and assignment task in a single stage. Inspired by these works, we use both 

LiDAR and camera sensors to complement individual sensor limitations on detection and tracking 

performances. Thus, our solution can be applied to a wide variety of complex scenarios. 

2.4. Public Agency Pilot Research 

NCDOT developed the Connected Autonomous Shuttle Supporting Innovation (CASSI) program to learn 

more about how this technology can be safely and effectively used in the future to offer additional mobility 

solutions, to help familiarize people with new transportation technologies, and to encourage 

environmentally-friendly transportation solutions (NCDOT/NCSU 2020). While the EcoPRT vehicle and 

CASSI are both forms of autonomous transit, they are differently sized and the research/program scopes 

and objectives diverge significantly. CASSI operates only on roadways with a fixed route and human 

operator carrying up to 12 passengers. EcoPRT is designed to operate on roadways or mixed-use paths at 

least 10’ in width currently on a fixed route with no human operator and up to two passengers. CASSI prior 

to COVID was operating at up to 8mph with plans to potentially reach 12mph during the NCSU 

deployment, while EcoPRT operates at up to 15mph on the roadway. More recently, NCDOT has deployed 

CASSI at the Wright Brothers National Memorial in Kill Devil Hills, where it makes two stops along its 
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approximately 1-mile fixed route between the Wright Brothers National Memorial museum and the First 

Flight bronze sculpture. NCDOT has used this deployment to test a new roadway environment as well as 

survey riders on their experience. 

It is noted that pilot deployments of autonomous transit vehicles have rapidly progressed across the US 

with similar scope and operational limitations to CASSI. In addition to agency pilot tests, universities often 

partner with deployments to provide additional research into the shuttles with the higher profile programs 

funded in the tens to around $100 million. At the University of Florida, a partnership with the City of 

Gainesville and FDOT called I-STREET is testing a comprehensive CAV system with autonomous shuttles 

as well as connected signals and additional detection technologies. The University of Michigan’s Mcity 

Test Facility provides a controlled environment built to model many urban facilities and research has 

evaluated public opinion of AVs and recommended a safety evaluation framework for AV technologies. 

VTTI has a past research project testing participants reactions in virtual reality to different passenger car 

light bar patterns, as well as developed an ontology and evaluation framework for vehicle and pedestrian 

interaction although it was only tested using simulated scenarios.  
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 Autonomous Vehicle Development 

3.1. EcoPRT Summary 

 

Figure 1 EcoPRT System Vision 

 

This report is a follow on to the development of microTransit vehicles listed in NCDOT Project 2017-025 

“Feasibility and Demonstration of Small Automated Vehicles as a Viable Transit Solution in NC.” We are 

currently in development of a system named EcoPRT. As a continuation to the aforementioned project, 

we continue to build and develop five microTransit vehicles for a system targeting mobility in closely 

congregated areas such as college campuses, corporate campuses, large shopping centers, airports, fair 

grounds, sports complexes, amusement parks, etc. Such environments being too far to walk while at the 

same time too short to drive are not easily addressed with current transmit options. 

The key characteristics of EcoPRT include (Hollar et al., 2017): 

• Flexibility. Vehicles can run on existing paths or on dedicated guideways. Compared to existing 
solutions that a) rely solely on dedicated guideways or b) rely exclusively on existing 
infrastructure, EcoPRT is a unique hybrid of the two. As a rubber-tired vehicle, it can be 
operated on existing concrete roadways as a low-speed automated vehicle, and, as a light-
weight vehicle, the cost and load requirements of elevated dedicated roadways is substantially 
less when compared to other vehicles. 

• Low cost. Light-weight, small footprint vehicles reduce infrastructure costs. A two-person, fully 
laden EcoPRT vehicle weighs 1,000 lbs., much lighter than conventional automobiles or other 
PRT systems. Consequently, elevated guideways would require less support loads and therefore 
could be built at less cost. 

• Convenience. Automated vehicles would be on demand, allowing point-to-point travel without 
stopping, all hailed by a smart phone. 

• Organic growth. EcoPRT’s flexibility allows a system to be installed quickly at low cost (even 
using a single vehicle). Adding additional vehicles or expanding the routes is still a relatively low 
cost/short term effort allowing EcoPRT to grow incrementally as demand grows.  
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This research helped to accelerate development and deployment of a working at-grade EcoPRT 

demonstration system on NCSU's campus. In all, this the following sections discuss the following 

items: 

• Status of vehicle builds  

• Future Pilot Testing 

• Suspension Evaluation for Generation 2.5 Vehicles 

• Pedestrian Detection 

• AV LED and Sound Design 

• Planned future interaction studies 
 

3.2. Status of vehicle builds 

Though the goal of the build was to complete five fully functional vehicles, Covid-19 slowed down the 

development. To date, we have one fully functional vehicle (version 2.0) followed by another partially 

functional vehicle (version 2.5). Three other vehicles are in later stages of construction since the last 

update. Figure 2 and Figure 3 show the vehicles as they are now. 

 

 
Figure 2 Completed (nearly) two vehicles currently being tested with graduate students 
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Figure 3 Three vehicles currently being constructed (third one not shown) 

 

Through the course of the project, we made a number of notable improvements and advances on the 

manufacturing of the vehicles. We worked with machine shop at the Mechanical and Aerospace 

Department to build the components for the suspension. Further, we worked with the Biological and 

Agricultural Engineering Research Shop for the construction of the frames and welding tasks.  

 

In all, we had four steel/aluminum hybrid frames built. The steel allowed for a stiffer frame improving 

riding dynamics, and the aluminum upper frame reduced the overall weight. In addition to the frames, the 

suspension, steering, and locomotion linkages for all four vehicles were designed and build. The steering 

was improved form the Gen 2.0 vehicle by including a stronger motor within a rack and pinion steering 

linkage. A redesigned motor controller increased the motor current amperage rating from 5 amps to 15 

amps allowing a quicker and stronger steering turning torque. Suspension was designed with a tighter 

turning radius in mind. With such vehicles, pedestrian bicycle paths could have sharp turns, so the 

EcoPRT vehicles were designed to have turning radii on the order of 10 feet. Given their narrow frames, 

however, careful attention was paid to the suspension, especially, while turning. Our Gen 2.0 vehicle had 

a shared axle frame and was relatively wobbly on turns. The newer Gen 2.5 vehicles included a lower 

center of gravity, independent suspension, tuned shock absorbers, and an anti-rollbar which all 

contributed to reduced rolling component. 

 

Initial field testing of the version 2.5 vehicle was conducted and affirmed the design choices for a 

smoother riding experience. Changes to the steering joints needed to be made stronger so we migrated 

from a ball joint to a “C” joint. Figure 4 shows a picture of the improve steering linkage. 
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Figure 4 EcoPRT of steering assembly 

 

Battery improvements have been made as well. Initially, we used two 36V 35Amp-hour Lithium batteries 

in series, but we found in initial testing that the current max was too limited. We upgraded to a single 72V 

50 Amp-hour Lithium battery pack with a max sustained current of 120amps with peak currents well 

above that. As a very compact design, the battery dimensions are 350 x 266 x 150 mm. Figure 5 shows 

the battery within the vehicle. Currently, we are designing a battery enclosure for improved protection. 

 

 
Figure 5 Battery within vehicle 

 

Currently, the two of the vehicles have the most extensive wiring done are the gen 2.0 and one of the 

newer gen 2.5 vehicles. We have manually field tested both of them. Notable improvement in power and 

torque is seen in the gen 2.5 vehicles. As opposed to the gen 2.0 vehicle, at full power, the gen 2.5 vehicle 

can easily lose traction on the concrete and spin the wheels.  

 

In Figure 6, the various electrical components are situated under the seat in the back of the vehicle. The 

brake actuators have been upgraded to supply more force (150 lbs) in the gen 2.5 vehicles. Further, the 

motor controller board has been modified to recharge the auxiliary batter during operation. Power relays 

were chosen to handle upwards of 400 amps at a relatively low control voltage of 12 volts. Brake 

actuators were placed in a parallel arrangement to further reduce space. There is a USB Hub to handle the 
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multiple USB devices including the inertial measure unit, the motor controller board, GPS unit, and 

additional sensors. 

 
Figure 6 Electronics layout within gen 2.5 vehicles. 

 

We have upgraded our ROS system to the latest version ROS Melodic. This required that we also upgrade 

our OS to Ubuntu 18.04 LTS. The upgrade allowed us to take advantage of latest driver and library 

versions and additionally migrate from the 16.04 LTS version that is no longer being officially supported. 

As part of the migration, we further finalized our shift to the Swift Navigation’s differential GPS, the 

Piksi Multi. With centimeter level accuracy with a steady output even within an urbanized landscape, the 

GPS unit has proven to be reliable. Currently, we use a base reference station for the differential GPS 

reference, but it is expected that Swift Navigation could be providing a reference difGPS signal that may 

obviate the need for our own base station. We have further upgraded our sensors used for object 

recognition including the industrial ZED stereo camera and Velodyne’s VLP-16. Both sensors are 

mounted on the front of the vehicle and provide continuous sensor data for object recognition and 

collision avoidance as seen in Figure 7. 

 

 



NCDOT 2019-28 Project Report 

 

 
12 

 

 

 

 

 

Figure 7 Front of vehicle showing Stereo Camera and 2D Lidar. 

 

3.3. Future Pilot Testing 

The goal with the build of the five vehicles is multifold. As part of this report, the vehicles provide a 

testbed for evaluating human AV interactions. Further, once vehicles are completed, a pilot test will be 

performed at NC State to better understand the utility of microTransit solutions on campus. Working with 

the Institutional Review Board (IRB), testing of the vehicles was divided up into three phases. In the first 

phase tests the vehicle on a test track located at the loading dock near the vehicle lab. Phase 2 tests the 

vehicle on an isolated parking lot area. The goal of the second phase is to run identical tests but in in a 

different environment. Phase 3 is the final test where we take passengers on the vehicle to capture 

ridership information. Initially for the university’s IRB approval (Institutional Review Board), we 

simplified the approval process by seeking approval of just Phase 1, and with success, we would then 

seek approval for phases 2 and 3.  

3.4. Riding Dynamics for Generation 2.5 Vehicles  

Contributing members: 

Graduate Students: Nikhil Patil  

As part of the vehicle development, we examined the process of designing and optimizing the suspension 

system for the prototype vehicle. The objectives of the prototype development are building a small, low 

cost, lightweight, and comfortable vehicle. The version 2.0 build of the vehicle lacks enough roll stiffness 

or a smooth ride. As such, a complete redesign of the suspension system for the version 2.5 build of 

prototypes was desired. The Short-Long Arm (SLA) double wishbone suspension with outboard coil was 
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the design of choice for the new prototype. To evaluate the ride and safety, a quarter car model was 

evaluated for suspension travel, body acceleration, and dynamic wheel load over a pseudo-random road 

profile. The results from these models showed a comparison between the two prototype vehicles in 

relation to their ride comfort and safety. For lateral stability, a few performance metrics were evaluated, 

and the two designs are compared by their body roll angle against steady state lateral acceleration. The 

design is validated by comparing the yaw rate and roll rate data from the simulation and road tests. As 

shown below, the chassis has increased floor space in Version 2.5, and the overall vehicle body has 

increased torsional stiffness. 

 
 

Figure 8 Front and back suspension geometries for generation 2.5 vehicle. 

 

 
Figure 9 Chassis floor space (colored gray) comparison between Gen 2 (top) and Gen 2.5 

(bottom) vehicles 
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Figure 10 Torsional Rigidity Comparison between Gen 2 and Gen 2.5 Chassis 

 

3.5. Pedestrian Detection and Path Estimation 

Contributing members: 

Graduate Students: Srinivas Gopalakrishnan, Deveshwar Hariharan 

As part of the effort in the project, we evaluated and tested the pedestrian detection algorithm supplied by 

NC A&T University partners as part of the detection element in the pedestrian communication. 

Furthermore, graduate student Srinivas Gopalakrishnan worked on pedestrian detection and pedestrian path 

prediction in his Master’s Thesis entitled, “Application of Neural Networks for Pedestrian Path Prediction 

in a Low-cost Autonomous Vehicle.” (Gopalakrishnan, 2020) Here he worked on pedestrian detection in 

addition to applying novel algorithms for path prediction. Though not directly used in this project, the path 

prediction of pedestrians can be used in bi-directional communication between the vehicle and pedestrian 

as a part of the collision avoidance. 

 

Figure 11 Vehicle simulation of path prediction 
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Figure 11 is the prediction by the algorithm called Social-General Adversial Network(S-GAN) (Gupta et 

al., 2021), where it recognizes pedestrians, keeps track of them over successive frames, and makes 

predictions on where they are possibly headed. In this image, the blue dots represent the ground truth values 

of the pedestrian’s movements, while the red dots represent the predictions of the pedestrian movement 

from the algorithm.  

 

Figure 12 Camera capture, recognition, and path plotting 

Both “You only look once” (YOLO) (Redmon, 2021) and Single Shot MultiBox Detector (SSD) (Liu et 

al., 2021) algorithms for object detection were implemented. In Figure 12, the camera is able to recognize 

the object in the image as a person with about 99% confidence.  

Additionally, this was captured directly from a camera in real-time. The blue path represents the trajectory 

of the person over time, effectively being able to track them. This information is used in the tracking and 

prediction algorithms to estimate the location of the pedestrian over a given period of time. 

Figure 13 was captured by the vehicle within the ROS framework. With the camera on the vehicle, the 

ROS system is able to track the person in real-time. These pedestrian detection algorithms will be used as 

the vehicle uses LED’s and sound as a means of alerting the pedestrians to the intent of the vehicle.  
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Figure 13 Capturing through the ROS framework along with path estimation 

 

 

Figure 14 Lidar ground and obstacle detection. 

Figure 14 contains the image captured through the visualizer of the ROS framework. Here the lines 

represent the sensor input from the Lidar to the computer. The green lines represent the ground and the 

red lines represent the potential obstacles to the vehicle. This is a demonstration of ground plane detection 

on the vehicle. The EcoPRT vehicles contain both camera data and Lidar data as part of the object 

detection sensors. Further research is ongoing to blend the sensor data together for improved accuracy. 

3.6. AV LED Light and Sound Design 

Contributing members: 

Senior design students: Jiachen Zhao, Wenqi Jiang, Zhen Chen, Wuge Wang 
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Graduate students: Deveshwar Hariharan, Srinivas Gopalakrishnan, Abhishek Singh 

 

  

Figure 15 Concept Design of LEDs 

and Sound 

Figure 16 System Operational 

Flowchart 

 

   

The electrical engineering senior design team worked on implementing the hardware for the pedestrian 

visualization and sound. Our initial experiments focused solely on the LED animated display to 

communicate to the pedestrian, and further experiments will also incorporate sound and automated speech 

from the vehicle to communicate to the Pedestrian.  

Figure 15 Concept Design of LEDs 

and Sound 

Figure 16 System Operational 

Flowchart 
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 shows the concept design of the solution with a Raspberry PI interfacing to the ROS package and 

controlling both the LED lighting and the sound.  

Figure 16 shows the flow diagram as originally implemented to automatically determine the type of signal 

to use. The four cases showing acceleration, deceleration, turning right, and then turning left. Additional 

cases could be easily incorporated as well. 

Initial demonstrations of the LED display capability were successful in Spring of 2021. Videos were 

recorded for the purposes of the online survey that is shown in the results of this report. Additional 

investigations will continue with an in-person study as described below. 

 

3.7. Future In-Person Study Pedestrian Interactions with 

Autonomous Vehicle 

As part of the final report, we investigated people’s interpretations of signals from autonomous vehicles 

through a survey. In addition to the survey, we intend to intend to continue the effort of doing live testing 

of human pedestrian interactions as well. This is currently unfinished, but the follow section details the 

experiment and what is involved. 

During the experiment, the participant will act as a pedestrian walking along the sidewalk and cross a 

small intersection (see map below). Sometimes, an autonomous vehicle will be driving toward the 

intersection where the participant will be crossing. The participant will need to determine when to cross 

the intersection safely. The participant should behave as they normally would crossing a typical 

intersection. In some experimental trials, the participant will be required to interact with the phone text 

messaging function while walking, just as a pedestrian on a phone would do.  

The autonomous EcoPRT vehicle will not have a rider but instead be programmed to travel one of two 

paths marked in the map below (Path #2 and Path #1).  

The EcoPRT vehicle will follow a trajectory autonomously going at 5mph. The vehicle will be 

programmed to cross the path of the participant in the parking lot when taking path #1. In addition, the 

vehicle includes obstacle detection so that it can automatically stop in the presence of an oncoming 

pedestrian. 
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Figure 17 The study area for the pedestrian / AV interactions  
  



NCDOT 2019-28 Project Report 

 

 
20 

 

 

 

 

 Pedestrian Detection and Intent Analysis 

Pedestrian tracking is a challenging problem as pedestrians need to be firstly detected in the current frame 

and then associated frames. The success in deriving a good tracker is mainly governed by a superior 

detector. In this work, we use YOLOv5 (Jocher et al., 2021) as a base module of the pedestrian detector. 

Therefore, we will briefly explain the working principle of YOLOv5 as a pedestrian detector. Since the 

YOLOv5 architecture is the same as the YOLOv4 (Bochkovskiy, Wang and Liao, 2020) except the 

training procedure, we will describe the architecture of the YOLOv4 and then will highlight the training 

differences. 

Figure 18 illustrates the architecture of YOLOv4 which can be segmented into four major parts: input, 

backbone, neck, and output. In the input section, the network takes an image and completes a data 

augmentation procedure that uses a data loader for scaling, color space adjustments, and mosaic 

augmentation. Among these augmentation techniques, mosaic augmentation firstly introduces in 

YOLOv4. The mosaic augmentation combines four training images into one in certain ratios to simulate 

four random crops which help to detect small-scale and partially occluded pedestrians. 

 

Figure 18 Architecture of YOLOv5 

 

After data augmentation, the augmented image is feed into the backbone of the network. In the backbone 

section, a BottleNeckCSP is used which is a modification of DenseNet (Huang et al., 2017). Using 

BottleNeckCSP different shallow features like edges, colors, etc., are extracted. During training, the 

backbone module learns these features. Besides, an additional Spatial Pyramid Pooling (SPP) block is 

used to increase the receptive field and separate the most important features from the feature maps of the 

BottleNeckCSP. The next part of the network is the neck part where the network enhances the 

understanding and extraction of the shallow features adopted in the backbone part. To do that a Path 

Aggregation Network (PANet) is used that includes a bottom- up augmentation path in conjunction with 

the top-down path used in Feature Pyramid Network (FPN). The PANet processes combine and analyzes 

the extracted features and finally optimizes based on the target of the model. The last part of the network 

is output where the model yields the detection results using dense predictions. Dense predictions provide 

a vector by combining predicted bounding boxes and confidence scores for the classified pedestrians. 
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During the training process of YOLOv5, the floating-point precision is set to 16 bit instead of the 32-bit 

precision used in YOLOv4. Therefore, YOLOv5 exhibits higher performances than Yolov4 under certain 

circumstances. 

 

4.1. Methodology 

In this section, we will explain our proposed methodology. At the high level, we propose Fused-YOLO 

which is an integrated framework of multi-modal sensor information to track pedestrians at a real-time 

speed. At the core of our proposed solution lies the distinction between improving detection accuracy and 

limiting the computational complexity. 

 

 Conversion from LiDAR Scans to Depth Images 

Camera-based pedestrian detection systems suffer from either low illumination or over-exposed images. It 

is a better idea to complement the system with a LiDAR which acts as the primary depth sensor due to its 

high accuracy and long sensing range. LiDAR scan produces sparse point clouds, albeit this 

representation of data is rather challenging to incorporate as an input to neural networks. Instead, depth 

images are better correspondents of point clouds that are easy to manipulate constructively. Therefore, we 

convert a 3D LiDAR scan to the depth image in 2D image space. Formally, the LiDAR stream consists of 

a sequence of registered 3D scans {S1, S2, ..., St} arriving at time points t1, t2, ..., tt. Each scan St is a point 

cloud, i.e., a set of 3D points, St = {p1, p2, ..., pi} and pi := {x, y, z} represents the Euclidean coordinate. 

Due to the huge amount of memories that are required over time, it is inefficient to work upon the raw 

point clouds. Instead, we can convert the 3D scan to a 2D depth map. A depth image can be thought of as 

a 2D grid map comprised of un cells. To generate the depth image we need to compute the distance of the 

scan objects from a viewpoint in such a way that maps pi to u. Then, we transform each point in point 

clouds from the Euclidean coordinate (x, y, z) to Spherical coordinate (θ, φ, r). This way we can map each 

point to the corresponding grid cell such that u : {θ, φ} → r. The pixel values of depth images lie in either 

gray or RGB color spaces. For the grayscale image, we normalize each cell value in the grid map to 0 → 

255 to the known maximum depth value and thus the intensity of the gray image represents the depth 

information. On the other hand, For the RGB scale image, we assign a distinct color from the RGB space 

to each cell value in the grid map based on the r parameter. 

 Fusion with Depth Image 

Our goal is to predict pedestrians in a joint space that combines both the RGB and the depth spaces. 

Although detecting pedestrians in RGB images is a common practice, there are few ways to incorporate 

depth images to detect pedestrians in a joint space. An end-to-end deep learning network takes an RGB 

image and corresponding depth image as input to generate joint predictions over pedestrians. In another 

setting, an RGB image and a depth image can be processed sequentially using a single network. However, 

in the former case, the network architecture becomes very complex to be able to process depth and RGB 

images in an end-to-end fashion. In the latter case, the network requires to process sequential call which 

causes a huge runtime overhead in a long run. 
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Our solution utilizes the Kalman filter along with parallel processing of RGB and depth images. To 

predict in a joint space, first, we project the LiDAR scan as a depth image to the RGB camera space. Let 

xr and xd be the RGB and depth images, respectively. Since (in common settings) the positions of camera 

and LiDAR are fixed but the resolution of camera image and the depth image from the LiDAR scan varies 

in size, we can project the depth image to the RGB camera space with either zero padding to the smaller 

image or cropping each of them into a same size. We denote this synchronized depth image by xs. Second, 

we vertically concatenate the RGB image xr and the zero-padded depth image xf by resizing each of them 

into a fixed size such that x = {xs, xr}. Although it is possible to use an image classification network to 

predict pedestrians directly over xs, it requires multiple calls for the joint prediction, i.e., the xr and the xs 

need to be fed to the pedestrian detection and pedestrian classification models, respectively. Thus, 

concatenating the xr and the xs into x reduces the number of calls to different models and significantly 

improves the runtime efficiency. Finally, we feed this concatenated image x to the pedestrian detector f to 

obtain bounding boxes and scores over fused images such that ŷ = f(x). From the prediction ŷ, we can 

also separate individual predictions the ŷr and the ŷs for the xr and the xs correspondents, respectively. 

Since we vertically concatenate the xs with the xr, we can calculate an offset o based on the height of xr. 

Then, we translate each bounding box bs ∈ ŷs to the down by o.  

Overlaying ŷs to ŷr may raise three distinct types of scenarios. Firstly, ŷs reduces the miss detection by 

accurately detecting pedestrians. Secondly, ŷs provides redundant inference with respect to ŷr. Finally, ŷs 

does not improve detection accuracy since it cannot detect any pedestrians. To overcome these scenarios, 

we utilize a Kalman filter to evaluate the joint predictions systematically. In our next subsection, we will 

describe the proposed Kalman filter in detail. 

 

 Integrated Framework for Pedestrian Tracking 

The Kalman filter has been extensively applied in pedestrian tracking from the camera stream. Our 

framework uses such a technique to predict and update the pedestrian trajectories from the continuous 

camera and LiDAR streams. Our integrated framework augments the capability of the existing pedestrian 

tracking method by fusing depth information. To track multiple pedestrians in a frame, our framework 

uses three important information, i.e., bounding boxes from the RGB images, optical flow between 

consecutive RGB image frames, and bounding boxes from the depth images. 

One of the important properties of the Kalman filter is that the state vector is a hidden parameter and the 

observation provides useful information to update the state vector. Therefore, in our setting while using 

the Kalman filter, the observations, i.e., bounding boxes, from the detector are not directly useful for 

tracking pedestrians. Basically, the proposed Kalman filter-based tracking has two stages: the prediction 

and the update stages. In the prediction stage, the bounding boxes for pedestrians are predicted using the 

corresponding state of the bounding boxes in the previous frames. In the update stage, the observation of 

pedestrians in the current frame is used to update the predicted states of pedestrians. 

Let st
i be the state vector of ith bounding pedestrian window in frame t. To track multiple pedestrians, it is 

convenience to have multiple Kalman filters, e.g., one for each pedestrian detected in the frame as 

follows: 
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where Ft-1
i and Ht

i denote the state transition and the measurement matrices for the ith pedestrian, 

respectively. The vectors wt−1 and vt are noise terms which are assumed to be Gaussians with zero mean 

and covariance matrices Qt and Rt. The prediction stage involves reasoning about the state vectors and 

their associated error covariance matrices at time t given the measurements up to t − 1 as follows: 

 

Next, in the update stage updates, the state vectors and their error covariance matrices with the current 

observations are as follows: 

 

where Kt
i is the Kalman gain which emphasizes how pre- diction and measurement are intimately related. 

Therefore, the process of fusion begins with identifying observation models and associated measurement 

noises for each observation modality. For instance, in our settings, the bounding boxes from the RGB and 

depth images are considered as positional information whereas the optical flow provides the velocity 

information only. This way we can assign a separate observation model for updating the joint prediction 

state. 

 Detecting Occluded Pedestrians 

In this section, we address the problem of detecting body parts of pedestrians using deep neural networks. 

In particular, we consider the occluded pedestrian detection problem in autonomous driving settings. 

While state-of-the-art deep neural models perform reasonably well for detecting full-body pedestrians, 

their performances are not satisfactory for occluded pedestrians. Introducing a new training strategy along 

with a fusion mechanism, we enhance the performance of the SSD-Mobilenet and the Faster R-CNN by 

utilizing body parts information to handle occluded pedestrians. 

In public datasets, we have found it is challenging to find detailed labeling of body parts, e.g., the Caltech 

dataset or the CityPerson dataset do not have any body part label for detecting occluded pedestrians. On 

the other hand, it is convenient to label different body parts on the Penn-Fudan dataset (Wang et al., 

2007). However, the downside of Penn-Fudan dataset is small. Therefore, we create a dataset with 

detailed body parts for 1500 images. We segregate the full-body pedestrian into three parts: head, arm, 

and leg. Thus, covering the most region of a pedestrian’s body. We introduce variation in our dataset by 

collecting data from different conditions, e.g., variation in illuminations and sizes, occlusion by objects, 

indoor and outdoor environments. Although our dataset is small, we introduce variation by collecting data 

from different places around the world, i.e., India, Bangladesh, Malaysia, Dubai, and USA. 
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Figure 19 Body part detection 

 

In Figure 19, the first row shows the detection results of Faster R-CNN and the second row shows the 

detection results of the SSD-Mobilenet. Yellow, green, light green and white boxes represent arm, head, 

leg and person, respectively. It is evident from the figure that the Faster R-CNN exhibits higher detection 

rate in contrast with the SSD- Mobilenet. 

 

4.2. Experiment Results 

We evaluate the pedestrian detection performances in terms of Miss Rate (MR) vs False Positive Per 

Image (FPPI) and also provide accuracy, precision, recall, and run-time efficiency of the model. We 

conduct our experiments on a 64-bit Ubuntu 18.04 server that has an Intel(R) Core(TM) i9-7900XCPU @ 

3.30GHz with 64GB memory. In our setup, we also have an NVIDIA GeForce RTX 2080 GPU with 8GB 

memory. 

 Dataset 

We perform our experiments on the Waymo open dataset which contains a wide range of diverse 

examples since data are collected among Phoenix, Mountain View, and San Francisco cities in the USA, 

plus it contains daytime and nighttime driving data (Sun et al., 2020). This dataset is recently released and 

comprising of large-scale multimodal sensor data, i.e., high-resolution camera and LiDAR data. In 

particular, the dataset is collected using five LiDAR sensors and five high- resolution pinhole cameras 

and contains four object classes: Vehicles, Pedestrians, Cyclists, Signs. It has 12.6M high- quality 3D 

bounding box labels in total for 1,200 segments for LiDAR data. On the other hand, it has 11.8M 2D 

tightly fitting bounding box labels in total for 1,000 segments of camera data. In our setup, we use front 

camera images and project LiDAR data onto their corresponding camera images.  
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 Performance Analysis 

We evaluate our proposed Fused-YOLO and the baseline YOLOv5 in terms of Miss Rate vs False 

Positive Pes Image (FPPI) curve in Figure 20. Testing on 456 numbers of images from the Waymo 

dataset, the proposed Fused-YOLO shows the miss rate of 33.435% whereas the YOLOv5 has the miss 

rate of 41.945%. This is because fusion helps more for accurately detecting pedestrians in ill-lit 

conditions. In low illumination conditions, the shape of pedestrians given by depth images entails useful 

features for pedestrian detection, which are more challenging to detect from camera images. Especially, 

we notice that the Fused-YOLO achieves significantly less miss rate in low illumination conditions in 

contrast to the baseline YOLOv5 model. On the other hand, fusion without the Kalman filter exhibits a 

38.602% miss rate. Because when naively fusing the bounding boxes from the depth and RGB images, it 

increases the false detection. On contrary, the Kalman filter provides a systematic approach to reduce 

false detection and achieves the lowest miss rate. 

 

Figure 20 The comparison among Fused-YOLO, Fusion without applying Kalman Filter, and 

Baseline YOLOv5 

 

Table 1 Evaluation Metrics 

Model FP TP FN Accuracy Precision Recall 

YOLOv5 12 105 75 0.546 0.897 0.583 

Fused-YOLO 12 117 63 0.609 0.900 0.650 

 

Table 1 represents that our proposed Fused-YOLO method has better accuracy, precision, and recall 

compared to the YOLOv5. Tabular data shows that the YOLOv5 shows the accuracy of 0.546, precision 

of 0.897, and recall of 0.583, whereas we obtain the accuracy of 0.609, the precision of 0.900 and, recall 

of 0.650 using the proposed Fused-YOLO. The downside of Fused-YOLO is of course increased false 

detection Rate when combining with the prediction on depth images. One of the possible reasons is the 

fact that YOLOv5 did not train on depth images. Therefore, our pre-trained YOLOv5 struggles to 

accurately detect pedestrians on depth images. 
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We find that our tracking method performs very well even in the cases where there are some miss 

detections in sequential frames. Figure 21 illustrates the performance of our tracker on a sequence of 

images where four pedestrians are detected in four consecutive frames and our method can track all of 

them. The green and cyan bounding boxes in the top row represent detected and tracked pedestrians, 

respectively. Figure 22 shows that there are two pedestrians detected in the first frame and then in the 

second frame model failed to detect one of the pedestrians. However, with the help of Kalam filter in the 

next two consecutive frames that pedestrian is detected and tracked again which represents the efficient 

performances of our method. Our tracking method uses a Kalman filter to predict multiple pedestrian 

bounding boxes. Then, fusing the detection results from RGB images and depth images, the Kalman filter 

update pedestrians’ state estimation. Correlating the previous bounding boxes to the current estimation, 

the Kalman filter can track pedestrians even if the detector might fail to detect pedestrians on the current 

frame. Furthermore, additional detected bounding boxes from depth images help the Fused-YOLO to 

track the pedestrians robustly. We observe that the Fused-YOLO achieves negligible runtime 

performance overhead (28 FPS) in contrast to the baseline YOLOv5 model (30 FPS). 

 

Figure 21 Multiple Pedestrian Tracking 

 

 

Figure 22 Robust Pedestrian Tracking 

 

In conclusion, we developed a real-time accurate pedestrian detection and tracking framework by fusing 

camera and LiDAR sensor data. The developed framework is integrated with the Kalman filter to detect 

and track multiple pedestrians accurately and robustly. The novelty of our framework lies in the adoption 

of the Kalman filter for both sensor fusion and tracking applications while minimizing the overall runtime 
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overhead. Experimental results demonstrated the improvement over the baseline YOLOv5 model. Our 

fusion method outperforms YOLOv5 in terms of detection and tracking accuracy with a negligible 

amount of runtime overhead. The difference becomes even more pronounced in ill-lit conditions when 

pedestrians are hard to find in camera images. Finally, our implementation of the Kalman filter along with 

the optical flow algorithm reduced the detection miss rate and improved the overall performance. Future 

work includes extending our tracking method for pedestrians’ behavior/intention analysis. 

 Autonomous Vehicle and Pedestrian Communication 

In this study, we examined the factors affecting pedestrians' interpretations of LED lighting on 

autonomous vehicles. Because of the importance of vehicle motion which influence pedestrians' crossing 

behavior, we aimed to explore whether motion will affect the participants' interpretation of each LED 

light pattern. In addition, signals have two types, meaningful type and attention capturing type. We also 

explored whether meaningful LED signal will affect the participants' interpretation of vehicle intent. This 

study adopted mTurk platform to carry out experiments. Participants watched videos of an authentic 

vehicle with LED stripes, which defined as "an autonomous vehicle". And they should finish a LED light 

interpretation task by using descriptive words or sentences. In this study, we coded participants' answer 

and calculated the interpretation correctness as the index of the communication quality. We hypothesized 

that AVs' intention in motion condition would be better interpreted; participants would be better at 

interpreting the intentions of vehicles with meaningful LED light pattern. 

 

5.1. Methodology 

This study was a 4 (group: (1) motion groups including group 1, group 2 and group 3; (2) motionless 

group including static group) × 5 (LED light pattern: (1) meaningful patterns including "arrows going in", 

"arrows going out", "arrows to the left" and "arrows to the right"; (2) attention capture pattern including 

"flashing squares") mixed design, the design for each group is shown in Figure 1. Group was a between-

subject factor and LED light pattern was a within-subject factor. In this study, participants completed an 

LED light interpretation task and a demographic survey.  

 

 Participants 

Participants were recruited using Amazon Mechanical Turk (mTurk), compensated with 1 dollar 

given completion of the study. Eighty participants (72.5% male, 2 participants didn’t report; range: 23 – 

71 years, Mage = 35.98 years, SDage = 9.92 years) completed the experiment.  
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 Materials 

The LED light interpretation 

task. Participants needed to 

watch videos and complete 

interpretation questions. The 

videos were recorded by an 

authentic autonomous vehicle 

with an LED screen. In 

motionless condition (static 

group), participants could only 

see the pattern on the LED 

screen and could not observe 

the motion of the autonomous 

vehicle, as shown in Figure 23a. 

In motion condition (group 1, 

group 2, and group 3), participants 

could both see the pattern on the 

LED screen and the motion of the car, as shown in Figure 23b. Furthermore, the groups in motion 

condition are separated in two conditions related to LED display, meaningful display (vehicle perspective 

signal and pedestrian perspective signal) and attention capture display. For participants in static group, 

after watching a video, they needed to complete one question that was describe the perceived meaning of 

each LED light pattern and were encouraged to write down all possible meanings. There were 5 trials in 

static group. For participants in other three groups, after watching a video, they needed to complete two 

questions. First, participants should describe the LED light pattern first to make sure they saw the signal 

with the vehicle in motion clearly. After that, they needed to describe the perceived meaning of each LED 

light pattern and were encouraged to write down all possible meanings. There were 6 trials in each motion 

group. 

 

The demographic survey. The demographic survey aimed to get basic demographic information of 

participants, including age, gender, education, living area, frequency of public transportation use, self-

reported general health, vision, hearing and memory conditions. 

 

Figure 23 An example of a motionless condition (a) and 

a motion condition (b). 
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5.2. Procedure 

Participants were directed to 

the Qualtrics page after they 

selected the study on the mTurk. 

Participants were required to read 

the general instruction of the 

experimental procedure and then 

completed a consent form. Once 

consent was received, they first read 

the specific and detailed instruction 

of the study. This instruction 

included size of the vehicle, 

purpose of the LED light pattern 

and content of tasks. Then 

participants accomplished the LED 

light interpretation task. One trial 

of the LED light interpretation task 

covered one video viewing (almost 

15 seconds) and one or two 

question(s) answering (e.g., please 

describe your perceived meaning of 

each LED light pattern. If you think 

there is more than one possible 

meaning, please describe all in the 

order of most strongly perceived 

meaning to the least.), the number of questions and trials varied in different groups (details are in the 

materials section). In the same group, the order of the problems was random among the participants. 

Following the completion of the LED light interpretation task, participants are required to describe the 

factors which made the signal's meaning clear or ambiguous, answer the size of display and finish a 

demographic survey. The detailed procedure was presented in Figure 24. 

 

5.3. Results 

Participants' level of communicating quality with LED signals in each driving video was measured 

by the rate of correct interpretation. The interpretations they answered were coded as 0 and 1 according to 

the standard meaning. Answers that were close to/consistent with the standard meaning were coded as 1, 

and those unrelated to the standard meaning were coded as 0. The mean and standard error of the code 

value were calculated and the code value was defined as interpretation correctness. Figure 25 summarizes 

participants’ overall correctness in interpreting the vehicle’s intention under various motion conditions. 

 

Figure 24 The experimental procedure and 

description for the experimental design of each group. 
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 Impact of motion condition on interpretation 

Difference of interpretation correctness of static group, group 2 and group 3 in different LED light 

patterns was compared. The results were shown in Figure 26. It indicated that the main effect of group 

was not significant (χ2(2) = .368, p = .832), motion state did not affect participants' interpretation of the 

signal. However, to be specific, in "arrows going in" (t(59) = 3.320, p = .002) and "flashing squares" 

(t(112) = 2.772, p = .007) LED light pattern, participants were better at interpreting vehicle intention in 

the motion condition. In contrast, in "arrows to the right" LED light pattern, participants were better at 

interpreting vehicle intention in the motionless condition (t(52) = - 2.471, p = .017). The main effect of 

pattern was significant (χ2(3) = 18.928, p < .001), participants interpreted better in a clear turning 

direction. The interaction effect between group and pattern was significant (χ2(6) = 18.198, p = .006).  

 

Figure 25 Interpretation correctness of 5 LED light patterns in static and with vehicle motion from either 

vehicle perspective (Group 2) or the pedestrian perspective (Group 3).  
The flashing squares (top right pattern) stayed the same in both perspective conditions thus the contrast was only between static and Group 1 

conditions. 
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Figure 26 Interpretation correctness of 4 

LED light patterns in motion and 

motionless conditions 

Figure 27 Interpretation correctness of 6 

motion types in meaningful and attention 

capture conditions 

 Impact of meaningful condition on interpretation 

As shown in Figure 27, interpretation correctness of group 1, group 2 and group 3 in different motion 

types was compared. The results showed that the main effect of group and pattern were not significant 

(group: χ2(2) = 3.936, p = .140; pattern: χ2(5) = 9.411, p = .094). The interaction effect between the 

group and the pattern was close to a marginally significant level (χ2(10) = 17.207, p = .070). In "stop" 

motion type, participants better interpreted in meaningless condition than the attention capturing 

condition(t(53) = 2.620, p = .011), however, in other motion types, there was no significant difference in 

interpretation correctness between the two conditions. 

 

 Participants' special interpretations for specific conditions 

We also summarized participants' special and interesting interpretations for specific conditions. For 

example, some participants interpreted the "arrows going in" in the static group as "The car is charging", 

although the standard meaning is "slow down and stop" (shown in Table 1). These are interesting 

observations showing that participants may be more open to new meanings of various signal patterns for 

an autonomous vehicle. 
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Table 2 Participants' special interpretations for specific conditions 

LED light pattern Standard meaning Participants special and interesting interpretations 

Flashing squares 

(Group 1) 

speed up 

This vehicle is not an ordinary car and to use caution 

when near it. 

It is to inform anyone walking in front of the machine. 

slow down It was coming close to other vehicles. 

turn left The vehicle is on duty and patrolling the area. 

Arrows going in 

(Group 2) 

moving and slow 

down 
These look like emergency vehicle lights to me. 

stop Feels like a "follow me" signal. 

Arrows going out 

(Group 2) 
moving and speed up 

The vehicle is trying to part a crowd. 

Blue led lights are mostly used for medical services. 

Like this signal is telling me to back off or get out of the 

way. 

Arrows going in 

(Group 3) 
moving and speed up It is going slow to find its destination. 

Arrows going out 

(Group 3) 

moving and slow 

down 
To get out of the way of the moving vehicle. 

Arrows to the right 

(Group 3) 
turn left 

The car is going to its destination. Searching for a 

passenger to pick up. 

It is most commonly associated with police vehicles. 

Arrows going out 

(Static group) 
start, speed up 

The vehicle is out of order. 

People should go around the sides. 

Arrows going in 

(Static group) 
slow down, stop 

The vehicle is not functioning properly. 

The car is charging. 

Flashing squares 

(Static group) 

attention, warning, 

caution 
The car stopped moving. 

 

5.4. Summary of Findings 

This study aimed to explore the factors affecting LED communication from autonomous vehicles to 

pedestrians. Due to the pandemic, it was difficult to carry out this study offline. We experimented with 
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recorded videos of real vehicles. In this study, participants were asked to use statements (not choices) to 

finish the questions. After coding the answer of each participant, we calculated the interpretation 

correctness in order to do statistical analysis. 

From this study, we concluded that when pedestrians were not familiar with the meaning of LED 

patterns, interpretation correctness of the vehicle's intention in the motion condition is better than the 

motionless condition; meaningful and attention capture conditions had no effect on interpretation 

correctness of vehicle intention, however, when the vehicle had no apparent turning action, participants 

were better at interpreting vehicle intention in the attention capture condition.  

As shown in Figure 25 and Figure 26, in "arrows to the left" and "arrows to the right" LED light 

patterns, participants were better interpreting in group 2. It suggested that pedestrians, despite being 

observers of autonomous vehicles, were still used to using the vehicle perspective. 

 

5.5. Limitations and Future Studies 

Due to COVID-19, the study adopted an online data collection method, the experimental 

environment for participants was difficult to control. Participants might be disturbed by factors such as 

noise and computer networks when completing tasks. We also could not control the distance between the 

participant and the screen, video viewing time, audio information displayed from videos, etc. These 

factors would affect participants' interpretation of the LED light pattern. 

Communication between pedestrians and autonomous vehicles needs to be studied in other detailed 

aspects in the future. Initially, how a pedestrian interprets information from an autonomous vehicle 

directly influences his behavior on the road, so hidden safety issues of autonomous vehicles should be 

noticed. Also, it is necessary to discuss how to use signals to improve the safety of pedestrians around 

autonomous vehicles. Furthermore, when crossing the road, pedestrians' visual behavior (e.g., the point of 

gaze) affects the communication between pedestrians and vehicles. The information indicator should be 

placed where it can be noticed most quickly to help pedestrians make appropriate and efficient decisions. 

In addition, estimating speed and distance of the vehicle might cause different interpretation. The 

accuracy of pedestrians' estimation of a vehicle speed is affected by the weather (Sun et al., 2015). If 

information such as vehicle speed, distance, arrival time, crossing safety were estimated by autonomous 

vehicles and presented on the screens, it may reduce the difficulty for pedestrians to understand the 

intention of the vehicle. Finally, pedestrians’ response to signals in different states (e.g., using mobile 

phones, communicating with companions, etc.) also affect their interpretation of the vehicle. 
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 Recommendations and Conclusions 

The research project identified several key findings and recommendations in cross-cutting categories 

related to Connected and Automated Vehicles as well as Multimodal Safety: 

Pedestrian Detection 

Pedestrian detection methods are used in CAVs as well as emerging infrastructure-based safety 

applications such as crosswalk clearance detection. These systems may include detection based on single 

source or fusion of multiple sources. This project tested multiple detection methods and developed 

improved methods with increased accuracy and reduced latency. The EcoPRT vehicle was able to 

incorporate the improved detection method, however the training image set included multiple camera 

perspectives and the method could likely be applied to infrastructure-based detection systems. 

Pedestrian Occlusion 

Occlusion is a common issue for detection in complex environments. This project developed a body part-

based method which detects head, arms and legs of pedestrians in order to improve the overall detection 

of pedestrians when they are partially occluded. This issue is less severe in infrastructure-based detection 

systems with elevated cameras that avoid most obstructions, but is very important in CAV pedestrian 

detection. The project also developed a database of occluded pedestrian images which can be used for 

training or testing other new methods addressing this issue. 

Communicating Intent 

Traditional pedestrian-vehicle communication of intent relies on vehicle dynamics, signaling and non-

verbal communication with drivers (typically eye contact). This project examined multiple methods for 

signaling the CAV intent to pedestrians using fixed or moving lightbars. Respondents struggled to 

correctly identify the message communicated by the lightbar in cases where multiple movements are 

expected (such as locations with potential turning movements) but identification improved in more 

constrained environments. 

Future Study 

The research team was not able to complete the planned in person experiment with communicating CAV 

intent due to delays to the project from COVID. The findings of the online survey can be used to better 

select lightbar patterns and test scenarios with varying complexity of vehicle movements to gauge 

pedestrian understanding in the field. In addition, the detection methods developed have promise for 

application in vehicle-based and infrastructure-based detection systems. Especially the work addressing 

occluded pedestrians is a key safety concern for CAV detection, and the dataset created for training and 

testing the method is a great resource for any future work in this domain.  
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